VAPOUR-LIQUID EQUILIBRIA IN THE ETHANE-PROPANE SYSTEM AT HIGH PRESSURES*

J. Mikšovský and I. Wichterle
Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 16502 Prague - Suchdol

Abstract

Vapour-liquid equilibria in the ethane-propane system were measured at $30 \cdot 00,50 \cdot 00,70 \cdot 02$, and $90.01^{\circ} \mathrm{C}$ in the whole concentration range. The detailed measurements were carried out in the neighbourhood of critical temperature of ethane (5 isotherms at $31.47,32.23,32.78,33.35$, and $34.40^{\circ} \mathrm{C}$) and in the critical region of propane (2 isotherms at 94.07 and $96.03^{\circ} \mathrm{C}$). Measurements in the critical region proved the assumption of critical exponent $\beta=0.33$ to be correct also for two-component and two-phase fluid mixture within the entire concentration range.

The recent investigations ${ }^{1-3}$ of the critical region of light hydrocarbons mixture containing almost pure component showed its practical importance for the separation processes. However, there is a very scarce experimental meterial which can be used for testing the proposed quantitative thermodynamic relations. Therefore, the data presented were determined enabling one the direct description of critical region. The measurements were carried out with transparent cell equipment described in previous paper ${ }^{4}$.

EXPERIMENTAL

Material used. Ethane, research grade, was supplied by Fluka, Switzerland, with 99.97% certified purity and with main admixture acetylene. Propane was research grade supplied by Fluka with 99.9% certified purity and isobutane as a main admixture. Both chemicals were not futher purified.

Apparatus and procedure. The transparent cell equipnent with forced circulation of vapour phase was described elsewhere ${ }^{4}$. The sampling technique was developed beforehand ${ }^{5}$. The analyses of mixture compositions were carried out by means of the gas chromatograph provided with the hydrogen flame ionization detector and nitrogen as a carrier gas. The column 950 mm long was filled by Porapak PS and operated at $60^{\circ} \mathrm{C}$. The peak area factor was determined from the analyses of mixtures of known composition synthetized by differential consecutive weighings of a sample bomb after charging with pure components. The peak area factor was found equal $f=1.49 \pm 0.02$ what is in an agreement with the theorctical valuc ${ }^{6} f_{\text {theor }}=1.48$. At least six analyses were made on each phase in such a way that the equilibrium in the system was not dis-

[^0]Table I
Vapour-Liquid Equilibrium in the Ethane(1)-Propane(2) System

$30.00^{\circ} \mathrm{C}$			$50.00^{\circ} \mathrm{C}$			$70 \cdot 02^{\circ} \mathrm{C}$		
x_{1}	y_{1}	P, atm	x_{1}	y_{1}	P, atm	x_{1}	y_{1}	P, atm
0.0000	0.0000	$10.68^{\text {a }}$	$0 \cdot 0000$	$0 \cdot 0000$	16.96^{a}	0.0000	0.0000	$25.66^{\text {a }}$
0.0245	0.0689	11.44	0.0271	$0 \cdot 0600$	17.88	0.0475	0.0894	27.96
0.0538	$0 \cdot 1409$	$12 \cdot 10$	0.0665	$0 \cdot 1385$	19.25	0.1319	0.2109	32.05
0.1244	0.2890	$13 \cdot 80$	0.0778	$0 \cdot 1599$	19.77	0.2224	0.3143	36.77
$0 \cdot 1748$	0.3848	15.73	$0 \cdot 1097$	0.2168	21.05	0.3269	0.4197	41.95
0.3217	0.5602	19.63	0.1466	0.2661	22.49	0.4039	0.4807	$46 \cdot 62$
0.4392	0.6641	23.46	0.2287	0.3779	25.74	0.4208	0.4882	47.67
0.6180	0.7837	29.83	0.2363	0.3877	$26 \cdot 19$	0.4335	0.4897	48.23
0.7085	0.8332	33.35	0.2660	$0 \cdot 4208$	27.32	$0 \cdot 4450$	0.4890	$48 \cdot 70$
0.8074	0.8881	37.14	0.3217	0.4848	29.68	0.4475	0.4890	48.78
0.8813	0.9280	$40 \cdot 51$	0.4278	$0 \cdot 5870$	33.88	0.4486	0.4889	48.82
0.9124	0.9459	41.87	0.5015	$0 \cdot 6460$	37.07	0.4542	0.4874	49.00
0.9374	0.9597	42.98	0.5653	0.6967	$40 \cdot 60$	0.4567	0.4867	49.07
0.9527	0.9686	43.97	$0 \cdot 6666$	0.7576	$45 \cdot 34$	0.4589	0.4865	49.08
0.97590	0.98375	44.87	0.7035	0.7715	$47 \cdot 27$	$0 \cdot 4783$	0.4783	$49 \cdot 31{ }^{c}$
0.97632	0.98377	44.92	0.7332	0.7786	48.73	-	--	-
0.99080	0.99353	$45 \cdot 60$	0.7504	0.7823	49.50	-	-	-
0.99473	0.99615	$45 \cdot 81$	0.7586	0.7810	49.93	-	-	-
0.99476	0.99621	45.83	0.7621	0.7765	$50 \cdot 12$	-	-	-
$1 \cdot 00000$	1.00000	$46 \cdot 03^{b}$	0.7755	0.7755	$50 \cdot 20^{c}$	-	-	-

${ }^{a}$ Saturated vapour pressure of propane; ${ }^{b}$ saturated vapour pressure of ethane; ${ }^{c}$ critical point.

Table II

Vapour-Liquid Equilibrium in the Ethane(1)-Propane(2) System Around the Critical Temperature of Ethane

$31.47^{\circ} \mathrm{C}$			$32.25{ }^{\circ} \mathrm{C}$			$32.78{ }^{\circ} \mathrm{C}$		
x_{1}	y_{1}	$P, \mathrm{~atm}$	x_{1}	y_{1}	P, atm	x_{1}	y_{1}	P, atm
0.94482	0.96193	$44 \cdot 81$	0.94920	0.96451	$45 \cdot 54$	0.94504	0.96075	$45 \cdot 95$
0.95355	0.96747	45.29	0.96026	0.97101	$46 \cdot 18$	0.96426	0.97287	47.00
0.96798	0.97648	$46 \cdot 12$	0.97296	0.97922	46.91	0.97825	0.98262	47.75
0.97312	0.97991	$46 \cdot 34$	0.98414	0.98714	$47 \cdot 47$	0.98557	0.98792	48.15
0.98301	0.98675	46.84	0.99379	0.99462	47.98	0.98914	0.99021	48.35
0.99038	$0 \cdot 99218$	$47 \cdot 12$	0.99553	0.99592	48.09	0.99036	0.99116	48.42
$1 \cdot 00000$	1.00000	$47 \cdot 42^{\text {a }}$	0.99857	0.99857	$48 \cdot 17^{\text {b }}$	0.99203	0.99203	$48.47^{\text {b }}$

Table II
(Continued)

$33.35^{\circ} \mathrm{C}$			$34.40^{\circ} \mathrm{C}$		
x_{1}	y_{1}	P, atm	x_{1}	y_{1}	P, atm
0.92324	0.94596	$45 \cdot 67$	0.91260	0.93812	$45 \cdot 97$
0.94703	0.96075	$46 \cdot 76$	0.93511	0.95237	47.08
0.96367	0.97182	$47 \cdot 64$	0.94682	0.95900	47.77
0.97382	0.97804	$48 \cdot 25$	0.95873	0.96592	$48 \cdot 50$
0.98131	0.98289	$48 \cdot 66$	0.96668	0.97029	$49 \cdot 00$
0.98387	0.98387	$48 \cdot 73^{\text {b }}$	0.96967	0.96967	$49 \cdot 06^{b}$

${ }^{a}$ Saturated vapour pressure of ethane; ${ }^{b}$ critical point.

Table III

Vapour-Liquid Equilibrium in the Ethane(1)-Propane(2) System Around the Critical Temperature of Propane

$90.01^{\circ} \mathrm{C}$			$94.51{ }^{\circ} \mathrm{C}$			$96.03^{\circ} \mathrm{C}$		
x_{1}	y_{1}	P, atm	x_{1}	y_{1}	$P, \mathrm{~atm}$	x_{1}	y_{1}	P, atm
0.00000	0.00000	$37 \cdot 25^{a}$	0.00000	$0 \cdot 00000$	$40 \cdot 31^{\text {a }}$	0.00000	0.00000	$41 \cdot 36^{a}$
0.01161	0.01725	37.90	0.00555	0.00756	$40 \cdot 60$	0.00473	0.00567	$41 \cdot 66$
0.02137	0.03071	38.48	0.01785	0.02327	41.31	0.01504	0.01690	$42 \cdot 25$
0.03954	0.05433	39.45	0.02790	0.03463	41.90	0.01793	0.01983	42.40
0.05657	0.07462	40.48	0.04130	0.04721	$42 \cdot 63$	0.02111	0.02111	$42.51{ }^{\text {b }}$
0.07161	0.09123	41.33	0.04924	0.05308	42.99	-	-	-
$0 \cdot 10173$	0.12157	43.11	0.05521	0.05521	$43 \cdot 14^{b}$	-	-	-
0.12241	0.13672	$44 \cdot 15$	-	-	-	-	-	-
0.13333	0.14048	44.67	-	-	-	-	-	-
$0 \cdot 14017$	$0 \cdot 14017$	44.75^{b}	-	-	-	-	-	-

${ }^{a}$ Saturated vapour pressure of propane; ${ }^{b}$ critical point.
turbed and both liquid and vapour compositions were well reproduced. The time needed for the phase separation is dependent on the closeness of measured and critical conditions. For pressures up to $P \approx P_{\mathrm{c}}-4 \mathrm{~atm}$ it was possible to sample during the circulation of vapour phase. It was necessary to wait for several minutes to attain reliable separation at higher pressures.

RESULTS AND DISCUSSION

The phase composition in mole fractions (x for liquid, y for vapour) and equilibrium pressure $(P, a t m)$ of the ethane-propane system at $30.00,50 \cdot 00$, and $70.02^{\circ} \mathrm{C}$ are presented in Table I. The measurements in the neighbourhood of critical temperature of ethane, i.e. the isotherms $31.47,32.25,32 \cdot 78,33 \cdot 35$, and $34.40^{\circ} \mathrm{C}$ are summarized in Table II. The measurements in the vicinity of propane critical temperature the isotherms $90.01,94.51$, and $96.03^{\circ} \mathrm{C}$ - are presented in Table III.

The behaviour of this system within the entire concentration range is shown in K-value versus pressure diagram in Fig. 1. The neighbourhoods of critical temperatures of both pure components are depicted in similar diagrams with expanded scale (Fig. 2 and 3). The critical exponent was evaluated graphically ${ }^{1}$ as a slope of the curve in the plot of $\left(y_{1} / x_{1}-1 \cdot 0\right)$ versus $\left(P_{\mathrm{cm}}-P\right)$ in logarithmic scales for the least pressure difference (P_{cm} is the critical pressure of mixture). From this diagram,

Fig. 1
K-Value versus Pressure Diagram for the Ethane-Propane System

- $30.00^{\circ} \mathrm{C}, 50.00^{\circ} \mathrm{C}, \quad 70.02^{\circ} \mathrm{C}$,
- $90.01^{\circ} \mathrm{C}$.

Fig. 2
K-Value verstis Pressure Diagran for the Ethane-Propane System Around the Critical Temperature of Ethane

$$
\circ 30.00^{\circ} \mathrm{C}, \quad 31.47^{\circ} \mathrm{C}, \quad \because 32.25^{\circ} \mathrm{C}
$$

$$
32.78^{\circ} \mathrm{C},-33.35^{\circ} \mathrm{C}, 34.40^{\circ} \mathrm{C}
$$

presented in Fig. 4, it follows that $\beta=0.33$ even for the isotherms in the neighbourhood of critical point of less volatile component.

The error analysis was carried out similarly as in the monograph ${ }^{7}$. The temperature was measured with an absolute accuracy of $0.01^{\circ} \mathrm{C}$. The pressure was measured with an absolute accuracy of 0.05 atm , relative reading error was 0.01 atm . The predominant part of the total error was the error in composition determination. The statistic analysis of 50 incidentally selected experimental points by the Student's test showed 1.6% relative error due to the evaluation of chromatograms. The individual error contributions (temperature, pressure, and composition) become more pronounced during the calculation of total error in equilibrium ratio $K=y / x$. The total error is dependent on absolute values of x, T, and P and is equal to the sum of individual errors estimated as 0.1% in temperature, 0.5% in pressure, and 3.0% in composition determination, i.e. the total error is equal to 3.6%. However, the total error in K-value does not exceed 2% for the most of experimental points.

Fig. 3
K-Value versus Pressure Diagram for the Ethane-Propane System Around the Critical Temperature of Propane

- $90.01^{\circ} \mathrm{C}, 94.51^{\circ} \mathrm{C}, 096.03^{\circ} \mathrm{C}$.

Fig. 4
Behaviour of the Ethane-Propane System Just Below Critical Locus

- $32.25^{\circ} \mathrm{C}, \quad 32.78^{\circ} \mathrm{C}, \quad-33.35^{\circ} \mathrm{C}$, $\bigcirc 34.40^{\circ} \mathrm{C}, 50.00^{\circ} \mathrm{C}, \odot 90.01^{\circ} \mathrm{C}, \odot 94.51^{\circ} \mathrm{C}$.

The comparison of our results was made with the data of Matschke and Thodos ${ }^{8}$ covering the corresponding high pressure range. The method of cross-plotting (diagram $\log K$ versus $1 / T$) should be used because the data were not measured at the same temperature levels. The qualitative agreement was reached only and the greatest deviations were found on the critical locus: almost 1 atm for the composition $x=0.75$. Wiese, Jacobs and Sage ${ }^{9}$ mentioned the similar discrepancies between their and Thodos' data. Another values on critical locus - but in very narrow composition range were determined by Miniovich and Sorina ${ }^{10}$. The graphical comparison showed the values of our critical pressures lie between both sets ${ }^{8,10}$. With respect to the fact that the measurements ${ }^{4}$ of vapour pressures of pure compounds entirely agree with published data only the error in composition determination could be assumed. Such error causes the shift of critical locus to the left or right; however, mere graphical comparison eliminates this error, too.

REFERENCES

1. Wichterle I., Chappelear P. S., Kobayashi R.: J. Comput. Phys. 7 (3), 606 (1971).
2. Wichterle I., Kobayashi R., Chappelear P. S.: Hydrocarbon Processing 11, 233 (1971).
3. Chen R. J. J., Chappelear P. S., Kobayashi R.: J. Chem. Eng. Data 19 (1), 53, 58 (1974).
4. Mikšovský J., Wichterle I.: This Journal 40, 360 (1975).
5. Vejrosta J., Wichterle I., Wičar S.: This Journal 39, 206 (1974).
6. Dietz W. A.: J. Gas Chromatog. 2, 68 (1967).
7. Wichterle I.: Low Temperature and High Pressure Vapor-Liquid Equilibria in the Methane-Ethane-Propane Systems. Rice University Monograph, Houston 1970.
8. Matschke D. E., Thodos G.: J. Chem. Eng. Data 7, 232 (1962).
9. Wiese H. C., Jacobs J., Sage B. H.: J. Chem. Eng. Data 15, 82 (1970).
10. Miniovich V. M., Sorina G. A.: Trudy Gosud. Nauch. Issled. Prockt. Inst. Azot. Prom. Prod. Org. Sint. 12, 125 (1971).
[^1]
[^0]: * Part LXX in the series Liquid-Vapour Equilibrium; Part LXIX: This Journal 40, 360(1975).

[^1]: Translated by K. Hlavatý.

